基本架构
Redis 是典型的键值数据库,自己构建一个简单的键值数据库,建立起系统观,对它的总体架构和关键模块有一个全局的认知,然后再深入到具体的技术点。
简单的键值数据库称为 SimpleKV。开始构建时考虑存什么样的数据,对数据有哪些操作,也就是数据模型和操作接口。
数据模型
对于键值数据库,基本的数据模型是key-value模型。在 SimpleKV 中,key 是 String 类型,而 value 是基本数据类型,例如 String、整型等。对于实际生产环境中的键值数据库,value类型还可以是复杂类型。
对数据库选型时,一个重要考虑因素是它支持的value类型。例如,Memcached支持的 value 类型仅为 String 类型,而 Redis 支持的 value 类型包括了 String、哈希表、列表、集合等。Redis 能够在实际业务场景中得到广泛的应用,就是得益于支持多样化类型的 value。
从使用的角度来说,不同 value 类型的实现,不仅可以支撑不同业务的数据需求,而且也隐含着不同数据结构在性能、空间效率等方面的差异,从而导致不同的 value 操作之间存在着差异。
操作接口
对数据的基本操作。基本操作无外乎增删改查。
SimpleKV 需要支持的 3 种基本操作,即 PUT、GET 和 DELETE。
- PUT:新写入或更新一个 key-value 对;
- GET:根据一个 key 读取相应的 value 值;
- DELETE:根据一个 key 删除整个 key-value 对。
需要注意的是,有些键值数据库的新写/更新操作叫 SET。新写入和更新虽然是用一个操作接口,但在实际执行时,会根据 key 是否存在而执行相应的新写或更新流程。
在实际的业务场景中,我们经常会碰到这种情况:查询一个用户在一段时间内的访问记录。这种操作在键值数据库中属于 SCAN 操作,即根据一段 key 的范围返回相应的 value 值。
因此,PUT/GET/DELETE/SCAN 是一个键值数据库的基本操作集合。
对于一个具体的键值数据库而言,你可以通过查看操作文档,了解其详细的操作接口。
保存位置
完成构造数据模型与操作接口,进一步,一个重要的设计问题:键值对保存在内存还是外存?
保存在内存的好处是读写很快,毕竟内存的访问速度一般都在百 ns 级别。但是,潜在的风险是一旦掉电,所有的数据都会丢失。
保存在外存,虽然可以避免数据丢失,但是受限于磁盘的慢速读写(通常在几 ms 级别),键值数据库的整体性能会被拉低。
如何进行设计选择,我们通常需要考虑键值数据库的主要应用场景。比如,缓存场景下的数据需要能快速访问但允许丢失,那么,用于此场景的键值数据库通常采用内存保存键值数据。Memcached 和 Redis 都是属于内存键值数据库。对于 Redis 而言,缓存是非常重要的一个应用场景。
为了与Redis保持一致,SimpleKV 就采用内存保存键值数据。
基本组件
大体来说,一个键值数据库包括了访问框架、索引模块、操作模块和存储模块四部分:
访问模式
访问模式通常有两种:
一种是通过函数库调用的方式供外部应用使用,比如,上图中的libsimplekv.so,就是以动态链接库的形式链接到我们自己的程序中,提供键值存储功能;
另一种是通过网络框架以 Socket 通信的形式对外提供键值对操作,这种形式可以提供广泛的键值存储服务。在上图中,我们可以看到,网络框架中包括 Socket Server 和协议解析。
实际的键值数据库也基本采用上述两种方式,例如,RocksDB 以动态链接库的形式使用,而 Memcached 和 Redis 则是通过网络框架访问。通过网络框架提供键值存储服务,一方面扩大了键值数据库的受用面,但另一方面,也给键值数据库的性能、运行模型提供了不同的设计选择,带来了一些潜在的问题。
I/O 模型设计问题,简单来说,就是网络连接的处理、网络请求的解析,以及数据存取的处理,是用一个线程、多个线程,还是多个进程来交互处理呢?该如何进行设计和取舍呢?举个例子,如果一个线程既要处理网络连接、解析请求,又要完成数据存取,一旦某一步操作发生阻塞,整个线程就会阻塞住,这就降低了系统响应速度。如果我们采用不同线程处理不同操作,那么,某个线程被阻塞时,其他线程还能正常运行。但是,不同线程间如果需要访问共享资源,那又会产生线程竞争,也会影响系统效率,这又该怎么办呢?所以,这的确是个“两难”选择,需要我们进行精心的设计。
索引设计
当 SimpleKV 解析了客户端发来的请求,知道了要进行的键值对操作,此时,SimpleKV 需要查找所要操作的键值对是否存在,这依赖于键值数据库的索引模块。索引的作用是让键值数据库根据 key 找到相应 value 的存储位置,进而执行操作。
索引的类型有很多,常见的有哈希表、B+ 树、字典树等。不同的索引结构在性能、空间消耗、并发控制等方面具有不同的特征。不同键值数据库采用的索引并不相同,例如,Memcached 和 Redis 采用哈希表作为 key-value 索引,而 RocksDB 则采用跳表作为内存中 key-value 的索引。
一般而言,内存键值数据库(例如 Redis)采用哈希表作为索引,很大一部分原因在于,其键值数据基本都是保存在内存中的,而内存的高性能随机访问特性可以很好地与哈希表O(1) 的操作复杂度相匹配。
SimpleKV 的索引根据 key 找到 value 的存储位置即可。但是,和 SimpleKV 不同,对于
Redis 而言,很有意思的一点是,它的 value 支持多种类型,当我们通过索引找到一个key 所对应的 value 后,仍然需要从 value 的复杂结构(例如集合和列表)中进一步找到我们实际需要的数据,这个操作的效率本身就依赖于它们的实现结构。Redis 采用一些常见的高效索引结构作为某些 value 类型的底层数据结构,这一技术路线为 Redis 实现高性能访问提供了良好的支撑。
不同操作的具体逻辑
SimpleKV 的索引模块负责根据 key 找到相应的 value 的存储位置。对于不同的操作来说,找到存储位置之后,需要进一步执行的操作的具体逻辑会有所差异。SimpleKV 的操作模块就实现了不同操作的具体逻辑:
- 对于 GET/SCAN 操作而言,此时根据 value 的存储位置返回 value 值即可;
- 对于 PUT 一个新的键值对数据而言,SimpleKV 需要为该键值对分配内存空间;
- 对于 DELETE 操作,SimpleKV 需要删除键值对,并释放相应的内存空间,这个过程由分配器完成。
重启后快速提供服务
分配器是键值数据库中的一个关键因素。对于以内存存储为主的 Redis 而言,这点尤为重要。Redis 的内存分配器提供了多种选择,分配效率也不一样。
希望 SimpleKV 重启后能快速重新提供服务,所以,在 SimpleKV 的存储模块中增加了持久化功能。鉴于磁盘管理要比内存管理复杂,SimpleKV 就直接采用了文件形式,将键值数据通过调用本地文件系统的操作接口保存在磁盘上。此时,SimpleKV 只需要考虑何时将内存中的键值数据保存到文件中,就可以了。
- 一种方式是,对于每一个键值对,SimpleKV 都对其进行落盘保存,这虽然让 SimpleKV的数据更加可靠,但是,因为每次都要写盘,SimpleKV 的性能会受到很大影响。
- 另一种方式是,SimpleKV 只是周期性地把内存中的键值数据保存到文件中,这样可以避免频繁写盘操作的性能影响。但是,一个潜在的代价是 SimpleKV 的数据仍然有丢失的风险。
小结
构建一个简单的键值数据库 SimpleKV。SimpleKV 包含了一个键值数据库的基本组件,对这些组件有了了解之后,后面在学习Redis 这个丰富版的 SimpleKV 时,就会轻松很多。
从对比图中,可以看到,从 SimpleKV 演进到 Redis,有以下几个重要变化:
- Redis 主要通过网络框架进行访问,而不再是动态库了,这也使得 Redis 可以作为一个基础性的网络服务进行访问,扩大了 Redis 的应用范围。
- Redis 数据模型中的 value 类型很丰富,因此也带来了更多的操作接口,例如面向列表的 LPUSH/LPOP,面向集合的 SADD/SREM 等。
- Redis 的持久化模块能支持两种方式:日志(AOF)和快照(RDB),这两种持久化方式具有不同的优劣势,影响到 Redis 的访问性能和可靠性。
- SimpleKV 是个简单的单机键值数据库,但是,Redis 支持高可靠集群和高可扩展集群,因此,Redis 中包含了相应的集群功能支撑模块。
Redis数据结构
Redis接收到一个键值对操作后,能以微秒级别的速度找到数据,并快速完成操作。速度快的原因:
- 它是内存数据库,所有操作都在内存上完成,内存的访问速度本身就很快。
- 归功于它的数据结构。这是因为,键值对是按一定的数据结构来组织的,操作键值对最终就是对数据结构进行增删改查操作,所以高效的数据结构是 Redis 快速处理数据的基础。
Redis的键值对中值的数据类型:String(字符串)、List(列表)、Hash(哈希)、Set(集合)和 Sorted Set(有序集合)。
其底层实现,数据结构一共6种,分别是简单动态字符串、双向链表、压缩列表、哈希表、跳表和整数数组。它们和数据类型的对应关系如下图所示:
String 类型的底层实现只有一种数据结构,也就是简单动态字符串。而 List、Hash、Set 和 Sorted Set 这四种数据类型,都有两种底层实现结构。通常情况下,我们会把这四种类型称为集合类型,它们的特点是一个键对应了一个集合的数据。
键和值的结构组织
为了实现从键到值的快速访问,Redis 使用了一个哈希表来保存所有键值对。
一个哈希表,其实就是一个数组,数组的每个元素称为一个哈希桶。所以,我们常说,一个哈希表是由多个哈希桶组成的,每个哈希桶中保存了键值对数据。其实,哈希桶中的元素保存的并不是值本身,而是指向具体值的指针。这也就是说,不管值是 String,还是集合类型,哈希桶中的元素都是指向它们的指针。
哈希桶中的 entry 元素中保存了key和value指针,分别指向了实际的键和值,这样一来,即使值是一个集合,也可以通过*value指针被查找到。因为这个哈希表保存了所有的键值对,所以,我也把它称为全局哈希表。哈希表的最大好处很明显,就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对——我们只需要计算键的哈希值,就可以知道它所对应的哈希桶位置,然后就可以访问相应的 entry 元素。
查找过程主要依赖于哈希计算,和数据量的多少并没有直接关系。也就是说,不管哈希表里有 10 万个键还是 100 万个键,我们只需要一次计算就能找到相应的键。当你往 Redis 中写入大量数据后,就可能发现操作有时候会突然变慢了。这其实是因为你忽略了一个潜在的风险点,那就是哈希表的冲突问题和 rehash 可能带来的操作阻塞。
哈希冲突:两个 key 的哈希值和哈希桶计算对应关系时,正好落在了同一个哈希桶中。
Redis 解决哈希冲突的方式,就是链式哈希。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。
通过 entry 元素中的指针,把它们连起来。这就形成了一个链表,也叫作哈希冲突链。但是,这里依然存在一个问题,哈希冲突链上的元素只能通过指针逐一查找再操作。如果哈希表里写入的数据越来越多,哈希冲突可能也会越来越多,这就会导致某些哈希冲突链过长,进而导致这个链上的元素查找耗时长,效率降低。
rehash 操作:增加现有的哈希桶数量,让逐渐增多的 entry 元素能在更多的桶之间分散保存,减少单个桶中的元素数量,从而减少单个桶中的冲突。
为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步:
- 给哈希表 2 分配更大的空间,例如是当前哈希表 1 大小的两倍;
- 把哈希表 1 中的数据重新映射并拷贝到哈希表 2 中;
- 释放哈希表 1 的空间。
可以从哈希表 1 切换到哈希表 2,用增大的哈希表 2 保存更多数据,而原来的哈希表 1 留作下一次 rehash 扩容备用。
过程看似简单,但是第二步涉及大量的数据拷贝,如果一次性把哈希表 1 中的数据都迁移完,会造成 Redis 线程阻塞,无法服务其他请求。此时,Redis 就无法快速访问数据了。为了避免这个问题,Redis 采用了渐进式 rehash。
在第二步拷贝数据时,Redis 仍然正常处理客户端请求,每处理一个请求时,从哈希表 1 中的第一个索引位置开始,顺带着将这个索引位置上的所有 entries 拷贝到哈希表 2 中;等处理下一个请求时,再顺带拷贝哈希表 1 中的下一个索引位置的entries。如下图所示:
巧妙地把一次性大量拷贝的开销,分摊到了多次处理请求的过程中,避免了耗时操作,保证了数据的快速访问。
集合操作效率
和 String 类型不同,一个集合类型的值,第一步是通过全局哈希表找到对应的哈希桶位置,第二步是在集合中再增删改查。集合的操作效率影响因素:
- 与集合的底层数据结构有关。例如,使用哈希表实现的集合,要比使用链表实现的集合访问效率更高。
- 操作效率和这些操作本身的执行特点有关,比如读写一个元素的操作要比读写所有元素的效率高。
底层数据结构
集合类型的底层数据结构主要有 5 种:整数数组、双向链表、哈希表、压缩列表和跳表。
哈希表的操作特点我们刚刚已经学过了;整数数组和双向链表也很常见,它们的操作特征都是顺序读写,也就是通过数组下标或者链表的指针逐个元素访问,操作复杂度基本是 O(N),操作效率比较低;压缩列表和跳表我们平时接触得可能不多,但它们也是Redis 重要的数据结构。
压缩列表:类似于一个数组,数组中的每一个元素都对应保存一个数据。和数组不同的是,压缩列表在表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量和列表中的 entry 个数;压缩列表在表尾还有一个 zlend,表示列表结束。
在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了。
跳表:跳表在链表的基础上,增加了多级索引,通过索引位置的几个跳转,实现数据的快速定位,
如果我们要在链表中查找 33 这个元素,只能从头开始遍历链表,查找 6 次,直到找到 33 为止。此时,复杂度是 O(N),查找效率很低。
增加一级索引:从第一个元素开始,每两个元素选一个出来作为索引。这些索引再通过指针指向原始的链表。例如,从前两个元素中抽取元素 1 作为一级索引,从第三、四个元素中抽取元素 11 作为一级索引。此时,我们只需要 4 次查找就能定位到元素 33 了。
增加二级索引:从一级索引中,再抽取部分元素作为二级索引。例如,从一级索引中抽取 1、27、100 作为二级索引,二级索引指向一级索引。这样,我们只需要 3 次查找,就能定位到元素 33 了。
整个查找过程就是在多级索引上跳来跳去,最后定位到元素。这也正好符合“跳”表的叫法。当数据量很大时,跳表的查找复杂度就是 O(logN)。
按照查找的时间复杂度对这些数据结构进行分类:
名称 | 时间复杂度 |
---|---|
哈希表 | O(1) |
跳表 | O(logN) |
双向链表 | O(N) |
压缩链表 | O(N) |
整数数组 | O(N) |
不同操作的复杂度
集合类型的操作类型很多,有读写单个集合元素的,例如 HGET、HSET,也有操作多个元素的,例如 SADD,还有对整个集合进行遍历操作的,例如 SMEMBERS。这么多操作,它们的复杂度也各不相同。而复杂度的高低又是选择集合类型的重要依据。
单元素操作是基础;范围操作非常耗时;统计操作通常高效;例外情况只有几个。
单元素操作:指每一种集合类型对单个数据实现的增删改查操作。例如,Hash 类型的 HGET、HSET 和 HDEL,Set 类型的 SADD、SREM、SRANDMEMBER 等。这些操作的复杂度由集合采用的数据结构决定,例如,HGET、HSET 和 HDEL 是对哈希表做操作,所以它们的复杂度都是 O(1);Set 类型用哈希表作为底层数据结构时,它的 SADD、SREM、SRANDMEMBER 复杂度也是 O(1)。
需要注意的是,集合类型支持同时对多个元素进行增删改查,例如 Hash类型的 HMGET 和 HMSET,Set 类型的 SADD 也支持同时增加多个元素。此时,这些操作的复杂度,就是由单个元素操作复杂度和元素个数决定的。例如,HMSET 增加 M 个元素时,复杂度就从 O(1) 变成 O(M) 了。
范围操作:指集合类型中的遍历操作,可以返回集合中的所有数据。比如 Hash类型的 HGETALL 和 Set 类型的 SMEMBERS,或者返回一个范围内的部分数据,比如 List类型的 LRANGE 和 ZSet 类型的 ZRANGE。这类操作的复杂度一般是 O(N),比较耗时,应该尽量避免。
Redis 从 2.8 版本开始提供了 SCAN 系列操作(包括 HSCAN,SSCAN 和 ZSCAN),这类操作实现了渐进式遍历,每次只返回有限数量的数据。这样一来,相比于HGETALL、SMEMBERS 这类操作来说,就避免了一次性返回所有元素而导致的 Redis 阻塞。
统计操作:集合类型对集合中所有元素个数的记录。例如 LLEN 和 SCARD。这类操作复杂度只有 O(1),这是因为当集合类型采用压缩列表、双向链表、整数数组这些数据结构时,这些结构中专门记录了元素的个数统计,因此可以高效地完成相关操作。
例外情况:指某些数据结构的特殊记录,例如压缩列表和双向链表都会记录表头和表尾的偏移量。这样一来,对于 List 类型的 LPOP、RPOP、LPUSH、RPUSH 这四个操作来说,它们是在列表的头尾增删元素,这就可以通过偏移量直接定位,所以它们的复杂度也只有 O(1),可以实现快速操作。
Redis 之所以能快速操作键值对,一方面是因为 O(1) 复杂度的哈希表被广泛使用,包括String、Hash 和 Set,它们的操作复杂度基本由哈希表决定,另一方面,Sorted Set 也采用了 O(logN) 复杂度的跳表。不过,集合类型的范围操作,因为要遍历底层数据结构,复杂度通常是 O(N)。这里的建议是:用其他命令来替代,例如可以用 SCAN 来代替,避免在 Redis 内部产生费时的全集合遍历操作。
对于复杂度较高的 List 类型,它的两种底层实现结构:双向链表和压缩列表的操作复杂度都是 O(N)。因此建议是:因地制宜地使用 List 类型。例如,既然它的 POP/PUSH 效率很高,那么就将它主要用于 FIFO 队列场景,而不是作为一个可以随机读写的集合。
高性能IO模型:单线程 Redis 高性能
Redis 是单线程,主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。
Redis采用单线程的原因
需要考虑多线程的开销问题,使用多线程,可以增加系统吞吐率,或是可以增加系统扩展性。对于一个多线程的系统来说,在有合理的资源分配的情况下,可以增加系统中处理请求操作的资源实体,进而提升系统能够同时处理的请求数,即吞吐率。但是,一个关键的瓶颈在于,系统中通常会存在被多线程同时访问的共享资源,比如一个共享的数据结构。当有多个线程要修改这个共享资源时,为了保证共享资源的正确性,就需要有额外的机制进行保证,而这个额外的机制,就会带来额外的开销。
多线程编程模式面临的共享资源的并发访问控制问题。并发访问控制一直是多线程开发中的一个难点问题,如果没有精细的设计,比如说,只是简单地采用一个粗粒度互斥锁,就会出现不理想的结果:即使增加了线程,大部分线程也在等待获取访问共享资源的互斥锁,并行变串行,系统吞吐率并没有随着线程的增加而增加。
采用多线程开发一般会引入同步原语来保护共享资源的并发访问,这也会降低系统代码的易调试性和可维护性。为了避免这些问题,Redis 直接采用了单线程模式。
单线程 Redis 高性能的原因
- Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。
- Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。
基本IO模型与阻塞点
以 Get 请求为例,SimpleKV 为了处理一个 Get 请求,需要监听客户端请求(bind/listen),和客户端建立连接(accept),从 socket 中读取请求(recv),解析客户端发送请求(parse),根据请求类型读取键值数据(get),最后给客户端返回结果,即向 socket 中写回数据(send)。
bind/listen、accept、recv、parse 和 send 属于网络 IO 处理,而 get 属于键值数据操作。既然 Redis 是单线程,那么,最基本的一种实现是在一个线程中依次执行上面说的这些操作。
潜在的阻塞点:分别是 **accept() 和 recv()**。当 Redis 监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。这就导致 Redis 整个线程阻塞,无法处理其他客户端请求,效率很低。不过,socket 网络模型本身支持非阻塞模式。
非阻塞模式
Socket 网络模型的非阻塞模式设置,主要体现在三个关键的函数调用上。在 socket 模型中,不同操作调用后会返回不同的套接字类型。
- 首先,socket() 方法会返回主动套接字。
- 然后,调用 listen() 方法,将主动套接字转化为监听套接字,此时,可以监听来自客户端的连接请求。
- 最后,调用 accept() 方法接收到达的客户端连接,并返回已连接套接字。
针对监听套接字,我们可以设置非阻塞模式:当 Redis 调用 accept() 但一直未有连接请求到达时,Redis 线程可以返回处理其他操作,而不用一直等待。但是要注意的是,调用 accept() 时,已经存在监听套接字了。
类似的,也可以针对已连接套接字设置非阻塞模式:Redis 调用 recv() 后,如果已连接套接字上一直没有数据到达,Redis 线程同样可以返回处理其他操作。我们也需要有机制继续监听该已连接套接字,并在有数据达到时通知 Redis。
这样才能保证 Redis 线程,既不会像基本 IO 模型中一直在阻塞点等待,也不会导致 Redis无法处理实际到达的连接请求或数据。
基于多路复用的高性能I/O模型
Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是经常听到的select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。
Redis 网络框架调用 epoll 机制,让内核监听这些套接字。此时,Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。
为了在请求到达时能通知到 Redis 线程,select/epoll 提供了基于事件的回调机制,即针对不同事件的发生,调用相应的处理函数。select/epoll 一旦监测到 FD 上有请求到达时,就会触发相应的事件。
这些事件会被放进一个事件队列,Redis 单线程对该事件队列不断进行处理。这样一来,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升Redis 的响应性能。
以连接请求和读数据请求为例,两个请求分别对应 Accept 事件和 Read 事件,Redis 分别对这两个事件注册 accept 和 get 回调函数。当 Linux 内核监听到有连接请求或读数据请求时,就会触发 Accept 事件和 Read 事件,此时,内核就会回调 Redis 相应的 accept 和 get 函数进行处理。
Redis 单线程是指它对网络 IO 和数据读写的操作采用了一个线程,而采用单线程的一个核心原因是避免多线程开发的并发控制问题。单线程的 Redis 也能获得高性能,跟多路复用的 IO 模型密切相关,因为这避免了 accept() 和 send()/recv() 潜在的网络 IO 操作阻塞点。
注:2020 年 5 月,Redis 6.0 的稳定版发布了,Redis 6.0 中提出了多线程模型。
AOF日志:Redis避免数据丢失
Redis可以当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快,但是,这里也有一个绝对不能忽略的问题:一旦服务器宕机,内存中的数据将全部丢失。
很容易想到的一个解决方案是,从后端数据库恢复这些数据,但这种方式存在两个问题:一是,需要频繁访问数据库,会给数据库带来巨大的压力;二是,这些数据是从慢速数据库中读取出来的,性能肯定比不上从 Redis 中读取,导致使用这些数据的应用程序响应变慢。所以,对 Redis 来说,实现数据的持久化,避免从后端数据库中进行恢复,是至关重要的。
Redis 的持久化主要有两大机制:AOF 日志和 RDB 快照。
AOF日志的实现
不同于写前日志(Write Ahead Log, WAL),也就是,在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。
AOF日志正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志,如下图所示:
传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。
以 Redis 收到“set testkey testvalue”命令后记录的日志为例,看看 AOF 日志的内容。其中,“*3”表示当前命令有三个部分,每部分都是由“$+数字
”开头,后面紧跟着具体的命令、键或值。这里,“数字”表示这部分中的命令、键或值一共有多少字节。例如,“$3 set”表示这部分有 3 个字节,也就是“set”命令。
但是,为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。
而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。
除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作.
不过,AOF 也有两个潜在的风险:
- 如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复,但是,如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。
- AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。
这两个风险都是和 AOF 写回磁盘的时机相关的。这也就意味着,如果我们能够控制一个写命令执行完后 AOF 日志写回磁盘的时机,这两个风险就解除了。
三种写回策略
AOF 机制给我们提供了三个选择,也就是 AOF 配置项 appendfsync 的三个可选值。
- Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
- Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;
- No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。
针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。
- “同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操作,不可避免地会影响主线程性能;
- “每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。
- 虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就丢失了;
三种策略的写回时机,以及优缺点汇总在了一张表格里:
因此,可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略了。总结一下就是:想要获得高性能,就选择 No 策略;如果想要得到高可靠性保证,就选择Always 策略;如果允许数据有一点丢失,又希望性能别受太大影响的话,那么就选择Everysec 策略。
AOF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。一定要小心 AOF 文件过大带来的性能问题。主要在于以下三个方面:
- 文件系统本身对文件大小有限制,无法保存过大的文件;
- 如果文件太大,之后再往里面追加命令记录的话,效率也会变低;
- 如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。
因此,需要采取一定的控制手段:AOF 重写机制。
AOF重写机制
AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入。比如说,当读取了键值对“testkey”: “testvalue”之后,重写机制会记录 set testkey testvalue 这条命令。这样,当需要恢复时,可以重新执行该命令,实现“testkey”: “testvalue”的写入。
重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。
AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了。
对一个列表先后做了 6 次修改操作后,列表的最后状态是[“D”, “C”, “N”],此时,只用 LPUSH u:list “N”, “C”, “D”这一条命令就能实现该数据的恢复,这就节省了五条命令的空间。对于被修改过成百上千次的键值对来说,重写能节省的空间当然就更大了。
AOF重写阻塞问题
和 AOF 日志由主线程写回不同,重写过程是由后台线程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。
重写的过程可以总结为“一个拷贝,两处日志”。“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。
“两处日志”:
因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。
第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。
每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,因为 Redis 采用额外的线程进行数据重写,所以,这个过程并不会阻塞主线程。
RDB内存快照
用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用。既可以保证可靠性,还能在宕机时实现快速恢复的一种持久化方法:内存快照。所谓内存快照,就是指内存中的数据在某一个时刻的状态记录。这就类似于照片,当你给朋友拍照时,一张照片就能把朋友一瞬间的形象完全记下来。
对 Redis 来说,它实现类似照片记录效果的方式,就是把某一时刻的状态以文件的形式写到磁盘上,也就是快照。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也得到了保证。这个快照文件就称为 RDB 文件,RDB 就是 Redis DataBase 的缩写。
和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,可以直接把 RDB 文件读入内存,很快地完成恢复。但这也存在新的问题:
- 对哪些数据做快照?这关系到快照的执行效率问题;
- 做快照时,数据还能被增删改吗?这关系到 Redis 是否被阻塞,能否同时正常处理请求。
给哪些内存数据做快照
Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这就类似于给 100 个人拍合影,把每一个人都拍进照片里。这样做的好处是,一次性记录了所有数据,一个都不少。给内存的全量数据做快照,把它们全部写入磁盘也会花费很多时间。而且,全量数据越多,RDB 文件就越大,往磁盘上写数据的时间开销就越大。
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave:
- save:在主线程中执行,会导致阻塞;
- bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是Redis RDB 文件生成的默认配置。
可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。
快照时数据能否修改
在对内存数据做快照时,如果数据能被修改,那就意味着 Redis 还能正常处理写操作。否则,所有写操作都得等到快照完了才能执行,性能一下子就降低了。
可以用 bgsave 避免阻塞,但是,避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。为了快照而暂停写操作,肯定是不能接受的。Redis 借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。
bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。此时,如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。
这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。
Redis 使用 bgsave 对当前内存中的所有数据做快照,这个操作是子进程在后台完成的,这就允许主线程同时可以修改数据。
多久做一次快照
虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。
- 频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,易造成恶性循环。
- bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了。
解决方法:可以做增量快照,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。前提是,需要记住哪些数据被修改了。需要使用额外的元数据信息去记录哪些数据被修改了,这会带来额外的空间开销问题。
能利用 RDB 的快速恢复,又能以较小的开销做到尽量少丢数据的方法:Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。
这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。
T1 和 T2 时刻的修改,用 AOF 日志记录,等到第二次做全量快照时,就可以清空 AOF 日志,因为此时的修改都已经记录到快照中了,恢复时就不再用日志了。
内存快照的优势:可以快速恢复数据库,也就是只需要把 RDB 文件直接读入内存,这就避免了 AOF 需要顺序、逐一重新执行操作命令带来的低效性能问题。
内存快照的局限性:它拍的是一张内存的“大合影”,不可避免地会耗时耗力。虽然,Redis 设计了 bgsave 和写时复制方式,尽可能减少了内存快照对正常读写的影响,但是,频繁快照仍然是不太能接受的。
最优解:混合使用 RDB 和 AOF,正好可以取两者之长,避两者之短,以较小的性能开销保证数据可靠性和性能。
关于 AOF 和 RDB 的选择问题有三点:
- 数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;
- 如果允许分钟级别的数据丢失,可以只使用 RDB;
- 如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。
数据同步:主从库实现数据一致
Redis 具有高可靠性体现在两方面:
数据尽量少丢失。AOF 和 RDB 保证了前者;
服务尽量少中断。Redis 的做法是增加副本冗余量,将一份数据同时保存在多个实例上。即使有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。
Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。
- 读操作:主库、从库都可以接收;
- 写操作:首先到主库执行,然后,主库将写操作同步给从库。
如果在不同的实例上执行,而且保持这个数据在三个实例上一致,就要涉及到加锁、实例间协商是否完成修改等一系列操作,但这会带来巨额的开销,当然是不太能接受的。而主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。
主从库同步的基本原理,总结有三种模式:
- 全量复制
- 基于长连接的命令传播
- 增量复制
主从库的第一次同步(全量复制)
当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。
例如,现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:
1 | replicaof 172.16.19.3 6379 |
主从库间数据第一次同步的三个阶段:
第一阶段:主从库间建立连接、协商同步的过程,主要是为全量复制做准备。从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。
具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。- runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”。
- offset,此时设为 -1,表示第一次复制。
主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。注意:FULLRESYNC 响应表示第一次复制采用的全量复制,也就是说,主库会把当前所有的数据都复制给从库。
第二阶段:主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。
具体来说,主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。这是因为从库在通过 replicaof 命令开始和主库同步前,可能保存了其他数据。为了避免之前数据的影响,从库需要先把当前数据库清空。在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作。
第三阶段:主库会把第二阶段执行过程中新收到的写命令,再发送给从库。
具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。
主从级联模式
一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。
如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。
解决方法:“主 - 从 - 从”模式。分担主库压力。
在刚才的主从库模式中,所有的从库都是和主库连接,所有的全量复制也都是和主库进行的。可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。
简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。
1 | replicaof 所选从库的IP 6379 |
这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:
一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。不过存在风险点,最常见的就是网络断连或阻塞。如果网络断连,主从库之间就无法进行命令传播了,从库的数据自然也就没办法和主库保持一致了,客户端就可能从从库读到旧数据。
主从库间网络断联(增量复制)
在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。
从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。它和全量复制的不同:全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。
此时主从库之间保持同步,需要 repl_backlog_buffer 缓冲区。当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。
repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。
刚开始的时候,主库和从库的写读位置在一起,二者起始位置相同。随着主库不断接收新的写操作,它在缓冲区中的写位置会逐步偏离起始位置,对主库来说,对应的偏移量就是 master_repl_offset。同样,从库在复制完写操作命令后,它在缓冲区中的读位置也开始逐步偏移刚才的起始位置,此时,从库已复制的偏移量 slave_repl_offset 也在不断增加。正常情况下,这两个偏移量基本相等。
主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和 slave_repl_offset 之间的差距。在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset 会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset 之间的命令操作同步给从库就行。
示意图中,主库和从库之间相差了 put d e 和 put d f 两个操作,在增量复制时,主库只需要把它们同步给从库。
增量复制的流程:
因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。
为避免这一情况,一般而言,可以调整 repl_backlog_size 这个参数。这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即 repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。
例如,如果主库每秒写入 2000 个操作,每个操作的大小为 2KB,网络每秒能传输 1000 个操作,那么,有 1000 个操作需要缓冲起来,这就至少需要 2MB 的缓冲空间。否则,新写的命令就会覆盖掉旧操作了。为了应对可能的突发压力,最终把repl_backlog_size 设为 4MB。
这样一来,增量复制时主从库的数据不一致风险就降低了。不过,如果并发请求量非常大,连两倍的缓冲空间都存不下新操作请求的话,此时,主从库数据仍然可能不一致。
针对这种情况,一方面,你可以根据 Redis 所在服务器的内存资源再适当增加repl_backlog_size 值,比如说设置成缓冲空间大小的 4 倍,另一方面,你可以考虑使用切片集群来分担单个主库的请求压力。
哨兵机制
如果主库发生故障,会直接影响从库的同步,因为从库没有相应的主库可以进行数据复制操作了。一旦有写操作请求了,按照主从库模式下的读写分离要求,需要由主库来完成写操作。此时,也没有实例可以来服务客户端的写操作请求:
如果主库挂了,我们就需要运行一个新主库,比如说把一个从库切换为主库,把它当成主库。涉及三个问题:
- 主库真的挂了吗?
- 该选择哪个从库作为主库?
- 怎么把新主库的相关信息通知给从库和客户端呢?
解决方法:哨兵机制。在 Redis 主从集群中,哨兵机制是实现主从库自动切换的关键机制,它有效地解决了主从复制模式下故障转移的这三个问题。
哨兵机制的基本流程
哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。
哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。
- 监控:哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;
- 选择主库:如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。
- 通知:在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。
主观下线与客观下线
主观下线:哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对 PING 命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。
如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。
如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线”,开启主从切换。因为很有可能存在这么一个情况:那就是哨兵误判了,其实主库并没有故障。可是,一旦启动了主从切换,后续的选主和通知操作都会带来额外的计算和通信开销。为了避免这些不必要的开销,要特别注意误判的情况。
误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下。
哨兵机制通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。
客观下线:在判断主库是否下线时,不能由一个哨兵说了算,只有大多数的哨兵实例,都判断主库已经“主观下线”了,主库才会被标记为“客观下线”,这个叫法也是表明主库下线成为一个客观事实了。这个判断原则就是:少数服从多数。同时,这会进一步触发哨兵开始主从切换流程。
简单来说,“客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。(当然,有多少个实例做出“主观下线”的判断才可以,可以由 Redis 管理员自行设定)。
如何选定新主库
可以把哨兵选择新主库的过程称为“筛选 + 打分”。在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库:
筛选条件:
一般情况下,我们肯定要先保证所选的从库仍然在线运行。不过,在选主时从库正常在线,这只能表示从库的现状良好,并不代表它就是最适合做主库的。在选主时,除了要检查从库的当前在线状态,还要判断它之前的网络连接状态。如果从库总是和主库断连,而且断连次数超出了一定的阈值,我们就有理由相信,这个从库的网络状况并不是太好,就可以把这个从库筛掉了。
具体判断:使用配置项 down-after-milliseconds * 10。其中,down-after-milliseconds 是我们认定主从库断连的最大连接超时时间。如果在 down-after-milliseconds 毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。如果发生断连的次数超过了 10 次,就说明这个从库的网络状况不好,不适合作为新主库。
分别按照三个规则依次进行三轮打分,从库优先级、从库复制进度以及从库 ID 号。只要在某一轮中,有从库得分最高,那么它就是主库了,选主过程到此结束。如果没有出现得分最高的从库,那么就继续进行下一轮。
第一轮:优先级最高的从库得分高。用户可以通过 slave-priority 配置项,给不同的从库设置不同优先级。比如,你有两个从库,它们的内存大小不一样,你可以手动给内存大的实例设置一个高优先级。在选主时,哨兵会给优先级高的从库打高分,如果有一个从库优先级最高,那么它就是新主库了。如果从库的优先级都一样,那么哨兵开始第二轮打分。
第二轮:和旧主库同步程度最接近的从库得分高。如果选择和旧主库同步最接近的那个从库作为主库,那么,这个新主库上就有最新的数据。
判断从库和旧主库间的同步进度:主从库同步时有个命令传播的过程。在这个过程中,主库会用master_repl_offset 记录当前的最新写操作在 repl_backlog_buffer 中的位置,而从库会用 slave_repl_offset 这个值记录当前的复制进度。此时,我们想要找的从库,它的 slave_repl_offset 需要最接近 master_repl_offset。如果在所有从库中,有从库的 slave_repl_offset 最接近 master_repl_offset,那么它的得分就最高,可以作为新主库。
旧主库的 master_repl_offset 是 1000,从库 1、2 和 3 的 slave_repl_offset 分别是 950、990 和 900,那么,从库 2 就应该被选为新主库。如果有两个从库的 slave_repl_offset 值大小是一样的(例如,从库 1 和从库 2 的 slave_repl_offset 值都是 990),我们就需要给它们进行第三轮打分了。
第三轮:ID 号小的从库得分高。每个实例都会有一个 ID,这个 ID 就类似于这里的从库的编号。目前,Redis 在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID 号最小的从库得分最高,会被选为新主库。
选择主库的流程总结:
首先,哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID 号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。
哨兵集群
哨兵机制可以实现主从库的自动切换。通过部署多个实例,就形成了一个哨兵集群。哨兵集群中的多个实例共同判断,可以降低对主库下线的误判率。一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。
在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的 IP 和端口,并没有配置其他哨兵的连接信息。
1 | sentinel monitor <master-name> <ip> <redis-port> <quorum> |
基于 pub/sub 机制的哨兵集群组成
Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制,使得哨兵实例之间可以相互发现。哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。
为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
哨兵 1 把自己的 IP(172.16.19.3)和端口(26579)发布到“__sentinel__:hello
”频道上,哨兵 2 和 3 订阅了该频道。那么此时,哨兵 2 和 3 就可以从这个频道直接获取哨兵 1 的 IP 地址和端口号。然后,哨兵 2、3 可以和哨兵 1 建立网络连接。通过这个方式,哨兵 2 和 3 也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
哨兵是如何知道从库的 IP 地址和端口:哨兵向主库发送 INFO 命令来完成的。
哨兵 2 给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵 1 和 3 可以通过相同的方法和从库建立连接。
通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。
基于 pub/sub 机制的客户端事件通知
从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。
重要的频道汇总,涉及几个关键事件,包括主库下线判断、新主库选定、从库重新配置。
知道了这些频道之后,就可以让客户端从哨兵这里订阅消息了。具体的操作步骤:客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
例如,可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:
1 | SUBSCRIBE +odown |
也可以执行如下命令,订阅所有的事件:
1 | PSUBSCRIBE * |
当哨兵把新主库选择出来后,客户端就会看到下面的 switch-master 事件。这个事件表示主库已经切换了,新主库的 IP 地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。
1 | switch-master <master name> <oldip> <oldport> <newip> <newport> |
有了这些事件通知,客户端不仅可以在主从切换后得到新主库的连接信息,还可以监控到主从库切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。
有了 pub/sub 机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接。
由哪个哨兵执行主从切换?
确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。哨兵集群要判定主库“客观下线”,需要有一定数量的实例都认为该主库已经“主观下线”了。任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送 is-master-down-by-addr 命令。接着,其他实例会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。
一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的 quorum 配置项设定的。例如,现在有 5 个哨兵,quorum 配置的是 3,那么,一个哨兵需要 3 张赞成票,就可以标记主库为“客观下线”了。这 3 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。
这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader 选举”。因为最终执行主从切换的哨兵称为 Leader,投票过程就是确定 Leader。
投票过程中,要成为 Leader 的哨兵,需满足两个条件:
- 拿到半数以上的赞成票;
- 拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。
例如,3 个哨兵、quorum 为 2 的选举过程。
在 T1 时刻,S1 判断主库为“客观下线”,它想成为 Leader,就先给自己投一张赞成票,然后分别向 S2 和 S3 发送命令,表示要成为 Leader。在 T2 时刻,S3 判断主库为“客观下线”,它也想成为 Leader,所以也先给自己投一张赞成票,再分别向 S1 和 S2 发送命令,表示要成为 Leader。
在 T3 时刻,S1 收到了 S3 的 Leader 投票请求。因为 S1 已经给自己投了一票 Y,所以它不能再给其他哨兵投赞成票了,所以 S1 回复 N 表示不同意。同时,S2 收到了 T2 时 S3发送的 Leader 投票请求。因为 S2 之前没有投过票,它会给第一个向它发送投票请求的哨兵回复 Y,给后续再发送投票请求的哨兵回复 N,所以,在 T3 时,S2 回复 S3,同意 S3 成为 Leader。
在 T4 时刻,S2 才收到 T1 时 S1 发送的投票命令。因为 S2 已经在 T3 时同意了 S3 的投票请求,此时,S2 给 S1 回复 N,表示不同意 S1 成为 Leader。发生这种情况,是因为S3 和 S2 之间的网络传输正常,而 S1 和 S2 之间的网络传输可能正好拥塞了,导致投票请求传输慢了。(先到先得)
最后,在 T5 时刻,S1 得到的票数是来自它自己的一票 Y 和来自 S2 的一票 N。而 S3 除了自己的赞成票 Y 以外,还收到了来自 S2 的一票 Y。此时,S3 不仅获得了半数以上的Leader 赞成票,也达到预设的 quorum 值(quorum 为 2),所以它最终成为了 Leader。接着,S3 会开始执行选主操作,而且在选定新主库后,会给其他从库和客户端通知新主库的信息。
如果 S3 没有拿到 2 票 Y,那么这轮投票就不会产生 Leader。哨兵集群会等待一段时间(也就是哨兵故障转移超时时间的 2 倍),再重新选举。这是因为,哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。
注意,如果哨兵集群只有 2 个实例,此时,一个哨兵要想成为 Leader,必须获得 2 票,而不是 1 票。所以,如果有个哨兵挂掉了,那么,此时的集群是无法进行主从库切换的。因此,通常我们至少会配置 3 个哨兵实例。
要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值 down-after-milliseconds。因为这个值在不同的哨兵实例上配置不一致,会导致哨兵集群一直没有对有故障的主库形成共识,也就没有及时切换主库,最终的结果就是集群服务不稳定。
切片集群
切片集群,也叫分片集群,就是指启动多个 Redis 实例组成一个集群,然后按照一定的规则,把收到的数据划分成多份,每一份用一个实例来保存。如果把 25GB 的数据平均分成 5 份(当然,也可以不做均分),使用 5 个实例来保存,每个实例只需要保存 5GB 数据。如下图所示:
在切片集群中,实例在为 5GB 数据生成 RDB 时,数据量就小了很多,fork 子进程一般不会给主线程带来较长时间的阻塞。采用多个实例保存数据切片后,我们既能保存25GB 数据,又避免了 fork 子进程阻塞主线程而导致的响应突然变慢。
在实际应用 Redis 时,随着用户或业务规模的扩展,保存大量数据的情况通常是无法避免的。而切片集群,就是一个非常好的解决方案。
如何保存更多的数据
刚刚的案例里,为了保存大量数据,我们使用了大内存云主机和切片集群两种方法。实际上,这两种方法分别对应着 Redis 应对数据量增多的两种方案:纵向扩展(scale up)和横向扩展(scale out)。
- 纵向扩展:升级单个 Redis 实例的资源配置,包括增加内存容量、增加磁盘容量、使用更高配置的 CPU。就像下图中,原来的实例内存是 8GB,硬盘是 50GB,纵向扩展后,内存增加到 24GB,磁盘增加到 150GB。
- 横向扩展:横向增加当前 Redis 实例的个数。就像下图中,原来使用 1 个 8GB 内存、50GB 磁盘的实例,现在使用三个相同配置的实例。
纵向扩展的好处是,实施起来简单、直接。不过存在两个潜在的问题:
- 当使用 RDB 对数据进行持久化时,如果数据量增加,需要的内存也会增加,主线程 fork 子进程时就可能会阻塞。不过,如果你不要求持久化保存 Redis 数据,那么,纵向扩展会是一个不错的选择。
- 纵向扩展会受到硬件和成本的限制。
与纵向扩展相比,横向扩展是一个扩展性更好的方案。这是因为,要想保存更多的数据,采用这种方案的话,只用增加 Redis 的实例个数就行了,不用担心单个实例的硬件和成本限制。在面向百万、千万级别的用户规模时,横向扩展的 Redis 切片集群会是一个非常好的选择。
但是,切片集群不可避免地涉及到多个实例的分布式管理问题。
- 数据切片后,在多个实例之间如何分布?
- 客户端怎么确定想要访问的数据在哪个实例上?
数据切片和实例的对应分布关系
Redis Cluster 方案中规定了数据和实例的对应规则。具体来说,Redis Cluster 方案采用哈希槽(Hash Slot,接下来我会直接称之为 Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中。具体的映射过程分为两大步:
- 首先根据键值对的 key,按照CRC16 算法计算一个 16 bit 的值;
- 然后,再用这个 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。
在部署 Redis Cluster 方案时,可以使用 cluster create 命令创建集群,此时,Redis 会自动把这些槽平均分布在集群实例上。例如,如果集群中有 N 个实例,那么,每个实例上的槽个数为 16384/N 个。也可以使用 cluster meet 命令手动建立实例间的连接,形成集群,再使用cluster addslots 命令,指定每个实例上的哈希槽个数。
假设集群中不同 Redis 实例的内存大小配置不一,如果把哈希槽均分在各个实例上,在保存相同数量的键值对时,和内存大的实例相比,内存小的实例就会有更大的容量压力。遇到这种情况时,你可以根据不同实例的资源配置情况,使用 cluster addslots 命令手动分配哈希槽。
数据、哈希槽、实例这三者的映射分布:
示意图中的切片集群一共有 3 个实例,同时假设有 5 个哈希槽,我们首先可以通过下面的命令手动分配哈希槽:实例 1 保存哈希槽 0 和 1,实例 2 保存哈希槽 2 和 3,实例 3 保存哈希槽 4。
1 | redis-cli -h 172.16.19.3 –p 6379 cluster addslots 0,1 |
在集群运行的过程中,key1 和 key2 计算完 CRC16 值后,对哈希槽总个数 5 取模,再根据各自的模数结果,就可以被映射到对应的实例 1 和实例 3 上了。在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。
客户端如何定位数据
进一步定位到实例,还需要知道哈希槽分布在哪个实例上。一般来说,客户端和集群实例建立连接后,实例就会把哈希槽的分配信息发给客户端。但是,在集群刚刚创建的时候,每个实例只知道自己被分配了哪些哈希槽,是不知道其他实例拥有的哈希槽信息的。
Redis 实例会把自己的哈希槽信息发给和它相连接的其它实例,来完成哈希槽分配信息的扩散。当实例之间相互连接后,每个实例就有所有哈希槽的映射关系了。
客户端收到哈希槽信息后,会把哈希槽信息缓存在本地。当客户端请求键值对时,会先计算键所对应的哈希槽,然后就可以给相应的实例发送请求了。
但是,在集群中,实例和哈希槽的对应关系并不是一成不变的,最常见的变化有两个:
- 在集群中,实例有新增或删除,Redis 需要重新分配哈希槽;
- 为了负载均衡,Redis 需要把哈希槽在所有实例上重新分布一遍。
Redis Cluster 方案提供了一种重定向机制,客户端给一个实例发送数据读写操作时,这个实例上并没有相应的数据,客户端要再给一个新实例发送操作命令。
当客户端把一个键值对的操作请求发给一个实例时,如果这个实例上并没有这个键值对映射的哈希槽,那么,这个实例就会给客户端返回下面的 MOVED 命令响应结果,这个结果中就包含了新实例的访问地址。
1 | GET hello:key |
其中,MOVED 命令表示,客户端请求的键值对所在的哈希槽 13320,实际是在172.16.19.5 这个实例上。通过返回的 MOVED 命令,就相当于把哈希槽所在的新实例的信息告诉给客户端了。这样一来,客户端就可以直接和 172.16.19.5 连接,并发送操作请求了。
在上图中,当客户端给实例 2 发送命令时,Slot 2 中的数据已经全部迁移到了实例 3。在实际应用时,如果 Slot 2 中的数据比较多,就可能会出现一种情况:客户端向实例 2 发送请求,但此时,Slot 2 中的数据只有一部分迁移到了实例 3,还有部分数据没有迁移。在这种迁移部分完成的情况下,客户端就会收到一条 ASK 报错信息,如下所示:
1 | GET hello:key |
这个结果中的 ASK 命令就表示,客户端请求的键值对所在的哈希槽 13320,在172.16.19.5 这个实例上,但是这个哈希槽正在迁移。此时,客户端需要先给 172.16.19.5 这个实例发送一个 ASKING 命令。这个命令的意思是,让这个实例允许执行客户端接下来发送的命令。然后,客户端再向这个实例发送 GET 命令,以读取数据。
Slot 2 正在从实例 2 往实例 3 迁移,key1 和 key2 已经迁移过去,key3 和 key4 还在实例 2。客户端向实例 2 请求 key2 后,就会收到实例 2 返回的 ASK 命令。ASK 命令表示两层含义:
- 第一,表明 Slot 数据还在迁移中;
- 第二,ASK 命令把客户端所请求数据的最新实例地址返回给客户端,此时,客户端需要给实例 3 发送 ASKING 命令,然后再发送操作命令。
和 MOVED 命令不同,ASK 命令并不会更新客户端缓存的哈希槽分配信息。上图中,如果客户端再次请求 Slot 2 中的数据,它还是会给实例 2 发送请求。这也就是说,ASK 命令的作用只是让客户端能给新实例发送一次请求,而不像 MOVED 命令那样,会更改本地缓存,让后续所有命令都发往新实例。